#P1841. 秘密信号

秘密信号

题目描述

Bessie is leading the cows in an attempt to escape! To do this, the cows are sending secret binary messages to each other.

Ever the clever counterspy, Farmer John has intercepted the first bib_i (1bi10,0001 \le b_i \le 10,000) bits of each of MM (1M50,0001 \le M \le 50,000) of these secret binary messages.

He has compiled a list of NN (1N50,0001 \le N \le 50,000) partial codewords that he thinks the cows are using. Sadly, he only knows the first cjc_j (1cj10,0001 \le c_j \le 10,000) bits of codeword jj.

For each codeword jj, he wants to know how many of the intercepted messages match that codeword (i.e., for codeword jj, how many times does a message and the codeword have the same initial bits). Your job is to compute this number.

The total number of bits in the input (i.e., the sum of the bib_i and the cjc_j) will not exceed 500,000500,000.

贝茜正在领导奶牛们逃跑.为了联络,奶牛们互相发送秘密信息.

信息是二进制的,共有 MM1M500001 \le M \le 50000)条,反间谍能力很强的约翰已经部分拦截了这些信息,知道了第 ii 条二进制信息的前 bib_i1bi100001 \le b_i \le 10000)位,他同时知道,奶牛使用 NN1N500001 \le N \le 50000)条暗号.但是,他仅仅知道第 jj 条暗号的前 cjc_j1cj100001 \le c_j \le 10000)位。

对于每条暗号 jj,他想知道有多少截得的信息能够和它匹配。也就是说,有多少信息和这条暗号有着相同的前缀。当然,这个前缀长度必须等于暗号和那条信息长度的较小者。

在输入文件中,位的总数(即 bi+ci\sum b_i + \sum c_i)不会超过 500000500000

输入格式

Line 11: Two integers: MM and NN.

Lines 2M+12 \ldots M+1: Line i+1i+1 describes intercepted code ii with an integer bib_i followed by bib_i space-separated 0's and 1's.

Lines M+2M+N+1M+2 \ldots M+N+1: Line M+j+1M+j+1 describes codeword jj with an integer cjc_j followed by cjc_j space-separated 0's and 1's.

输出格式

Lines 1N1 \ldots N: Line jj: The number of messages that the jj-th codeword could match.

4 5 
3 0 1 0 
1 1 
3 1 0 0 
3 1 1 0 
1 0 
1 1 
2 0 1 
5 0 1 0 0 1 
2 1 1
1 
3 
1 
1 
2

提示

Four messages; five codewords.

The intercepted messages start with 010, 1, 100, and 110.

The possible codewords start with 0, 1, 01, 01001, and 11.

0 matches only 010: 1 match

1 matches 1, 100, and 110: 3 matches

01 matches only 010: 1 match

01001 matches 010: 1 match

11 matches 1 and 110: 2 matches